Pre-trained Deep Neural Network using Sparse Autoencoders and Scattering Wavelet Transform for Musical Genre Recognition
نویسنده
چکیده
This paper tries to combine the approach of Deep Neural Networks (DNN) with the novel audio features extracted using the Scattering Wavelet Transform (SWT) for classifying musical genres. The SWT uses a sequence of Wavelet Transforms to compute the modulation spectrum coefficients of multiple orders which was already shown to be promising for this task. The DNN in this work uses layers pre-trained using Sparse Autoencoders (SAE). Data obtained from the Creative Commons website jamendo.com is used to boost the well-known GTZAN database, which is a standard benchmark for this task. The final classifier is tested using a 10-fold cross validation to achieve results similar to other state-of-the-art approaches.
منابع مشابه
A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملDeep Image Features in Music Information Retrieval
Applications of Convolutional Neural Networks (CNNs) to various problems have been the subject of a number of recent studies ranging from image classification and object detection to scene parsing, segmentation 3D volumetric images and action recognition in videos. CNNs are able to learn input data representation, instead of using fixed engineered features. In this study, the image model traine...
متن کاملWavelet-Based feature extraction for musical genre classification using support vector machines
Musical genre classification task falls into two major stages: feature extraction and classification. The latter implies a choice of a variety of machine leaning methods, as support vector machines, neural networks, etc. However, the former stage provides much more creativity in development of musical genre classification system and it plays crucial part in performance of the system as a whole....
متن کاملSparse Autoencoders in Sentiment Analysis
This paper examines the utilization of sparse autoencoders in the task of sentiment analysis. The autoencoders can be used for pre-training a deep neural network, discovering new features or for dimensionality reduction. In this paper, sparse autoencoders were used for parameters initialization in deep neural network. Experiments showed that the accuracy of text classification to a particular s...
متن کاملImproving the performance of neural network in differentiation of breast tumors using wavelet transformation on dynamic MRI
ABSTRACT Background: A computer aided diagnosis system was established using the wavelet transform and neural network to differentiate malignant from benign in a group of patients with histo-pathologically proved breast lesions based on the data derived independently from time-intensity profile. Materials and Methods: The performance of the artificial neural network (ANN) was evaluated u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Science (AGH)
دوره 16 شماره
صفحات -
تاریخ انتشار 2015